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ABSTRACT OF THE DISSERTATION

Nonlinear Acoustics in a Dispersive Continuum:

Random Waves, Radiation Pressure, and Quantum Noise

by

Michael Anthony Cabot
Doctor of Philosophy in Physics
University of California, Los Angeles, 1983

Professor Seth J. Putterman, Chair

The nonlinear interaction of sound with sound is studied using
dispersive hydrodynamics which is derived from a variational princi-
ple and the assumption that the internal energy density depends on
gradients of the mass density. The attenuation of sound due to non-
linear interaction with a background is calculated and is shown to
be sensitive to both the nature of the dispersion and decay band-
widths. The theoretical results are compared to those of low tempera-
ture helium experiments. A kinetic equation which describes the non-
linear self-interaction of a background is derived. When a Debye-type
cutoff is imposed, a white noise distribution is shown to be a sta-

tionary distribution of the kinetic equation. Zero point motion is

viii

————




introduced into the classical hydrodynamics through a renormalization
scheme, which imposes the requirement that in a sound scattering the
zero point motion does not lose energy. The form of the zero point
motion is then determined by the kinetic equation and a derived fluid
law that is analogous to Wien's displacement law for electromagnetic
radiation. The kinetic equation with - zero point motion included is
shown to have a Planck distribution as a stationary solution. An
H-theorem is presented. The attenuation and spectrum of decay of a
sound wave due to nonlinear interaction with zero point motion is
calculated. In one dimension, the dispersive hydrodynamic equations
are used to calculate the Langevin and Rayleigh radiation pressures

of wave packets and solitary waves.
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INTRODUCTION

The hydrodynamical equations for a classical one component fluid
constitute a contracted description in which knowledge of a complete
set of five field variables (e.g. o,s,;; the density, specific entropy,
and velocity) uniquely specifies the state.l These equations are in
general nonlinear due to the convective terms, which arise as a con-
sequence of the requirements imposed by Galilean relativity, as well as
the form of the equation of state for pressure "P" as a function of
density which is needed to close the theory. The equations of hydro-
dynamics are a unique consequence of the agssumption of a local descrip-
tion in terms of five field variables as a complete set, and Pascal's
law for the isotropy of the stresse¢s (i.e. the stress tensor in the
rest frame must be diagonal).

For disturbances of sufficiently small amplitude the hydrodynamics
can be linearized in the amplitude of deviation from the equilibrium
state. One finds that there exist traveling wave solutions (sound

waves) where the frequency w is related to the wave number k by

i
w = ck where c'(:—P’ ]2 .
pls

Such a linear relation is said to imply no dispersion. On the linear
level superposition applies, sound waves run through each other without
interacting so that the propagation of one wave is unaffected by the
presence of other waves. Nonlinearities cause a propagating wave to
interact with other waves so as to scatter energy out of the original
channel and with itself so as to distort and eventually form a shock-

front. The main goal of this thesis is to discuss the consequences




for sound propagation of including anisotropic stresses (and therefore
dispersion) as well as nonlinear effects.

The nonlinear dispersive equations are derived from a variational
principle (for an energy demsity which is a function of (Vo)z) in
Chapter I, where their general properties (e.g. Kelvin, Bermoulli and
conservation laws) are discussed., At lowest order the nonlinear

equations take the form:

2 2
Op = 6V p (0-1)
where
2
o= 2\72 v“
Se=—m=-c
dt e .

and G is a nonlinear coupling coefficient. This equation will always
be solved in a perturbation approach. For instance considering a super-
position of two waves which satisfy the lowest order equation [Jp=0;

so that

>
p= plcoa(il'r - wyt) + pzcos({2°; - wat)

one finds that the leading order correction to p due to the interaction

of the two waves is p where

12

2
Opi2 = Gp1e2¥ 1 cos[(;l : ﬁz)'; - (wy % wy)t]
: 4

so that nonlinearities create sum and difference frequencies.z




In Appendix A we consider the energy and momentum of a 1D wave
packet localized in wave number and propagating according to (0-1). As
a result of the nonlinearities some of the energy and momentum are
contained at (almost) zero wavelength and therefore part of the energy
and momentum propagate.at a different velocity than the original packet
if the fluid is dispersive? The various radiation pressures of these
packets are calculated and compared with the properties of solitoms.

As a propagating wave interacts with a background of sound the
waves created at the sum and difference frequencies takes energy from
the imposed wave and accounts for an attenuation which was calculated
by Westervelt4 for the nondispersive cane (o=0), The main contribution
to the scattering (attenuation) arises from terms on the right hand

side of (0-1) which are at resonance so that
2, » » 2 > > &
w tw =k tkyl ¢+l ikl

In the limit of no dispersion this occurs when two waves are parallel
(Elffiz). The presence of a small reversible dispersion can have a
dramatic effect since for a>0 there is a resonance possible at some
finite angle whereas for a<0 no resonance is possible and the scattering
of sound {s dramatically reduced. In Chapter II the scattering of

sound by sound for the dispersive medium is calculated. We find that
Westervelt's formula is multiplied by a factor of 2 for >0 and by "0Q"
for a<0. This effect applies, however, only when the dispersion is
larger than the bandwidth which results from the scattering. In
Appendix B the detailed transition formulas that apply in this inter-

mediate regime are calculated as well as an extra (usually logarithmic)



dispersion of sound due to scattering by sound.

The results, and especially the approach employed should be of
relevance to dielectric media (e.g. Helium, Quartz) at low temperature.
A dielectric is a medium in which the electrons are not free to flow so
that the only motion possible is a vibration of the constituent ions or
molecules. These oscillations are of course sound waves and in ad-
dition to the impressed wave there will be a background of random
oscillations due to the internmal energy (or temperature) of the dielec-
tric which must manifest itself in the form of sound (noise). Based
upon our presuumption that the nonlinear continuum mechanics can be
applied to the sound wave as well as the thermal noise we can use these
results of the macroscopic continuum to calculate the attenuation coef-
ficient of sound in dielectrics. Liquid helium is a particularly rich
dielectric since a>0 for P<18 atmospheres and less than zero at higher
pressure? In Chapter II some of the results are compared with the
measured ultrasonic attenuation properties in liquid helium.6

While nonlinear effects can cause energy to be scattered out of
a given channel they can also lead to processes in the background
whereby two waves collide and throw energy back into the given channel.
These effects are much like restituting collisions in kinetic theory
and are included in Chapter III where a Boltzmann type equation7 for
sound waves is derived from the hydrodynamics. The stationary solution
to the nonlinear Boltzmann equation for sound is white noise (equipar-
tition) thus deriving the noise spectrum which. is normally imposed upon

the linearized theory via the fluctuation dissipation theorem.




All of the results discussed above (both theory and experiment)
apply to the regime where hm/kBT<1. In the strong quantum limit
hm/kBT>l sound waves should also attenuate due to a spoutaneous decay
as first calculated by Slonimskii8 using a quantized theory. 1In
Chapter IIl we show how these results can also be obtained from the
classical nonlinear hydrodynamics by including the possibilicy of
scattering from a zero-temperature noise (or so-called zero point
mo:ion).9 By the second law of thermcdynamics the zero~temperature
state cannot lose energy. Thus the scattering calculation must be
renormalized so as not to remove energy from the zero-temperature noise.
By selecting this counfiguration out of the classical hydrodynamics we
generalize the Westervelt equation to include attenuation due to scat~
tering by quantum as well as thermal noise. The Boltzmann equation for
sound is also genmeralized so as to include a zero point noise defined
as above. The resulting equation for the quantum theory of interacting
sound waves has a stationary solution given by Planck's law plus
harmonic zero point motion. Planck's constant enters as an undetermined
constant which characterizes the most general solution to the balance
equation. The uniqueness of this solution as well as the corresponding
"H" theorem are discussed.

A central theme of this work is that many results normally thought
to be obtainable only through microscopic and or quantum calculations
can be interpreted and obtained directly from the classical nonlinear
hydrodynamics plus the second law. Thus the approach developed here
might be of value {n understanding quantum effects in complex N body

gystems. In particular when it is desired to understand quantum

e




noise in macroscopic systems such as Josephson junctionslo it should be
realized that the usual prescriptionll for writing down a quantum
Langevin equation does not take into account the remormalization
developed in Chapter III.

As the energy density of the sound field obeys a Boltzmann type
equation one can ask if there are compressional modes of the spectral
intensity of sound. This, so-called second sound (thermal waves) exists
in 1iquid helium and can be obtained via the procedure developed herein.
In this vein it has also recently been shown that the complete two
fluid hydrodynamics can be deduced from the nonlinear continuum

mechanics of the one~component classical fluid.12




CHAPTER I.

THE NONLINEAR DISPERSIVE CONTINUUM MECHANICS

At low temperatures sound in liquid helium and other dielectrics
decays due to scattering from other sound waves in the substance. We
regard these other waves as the thermal and quantum noise present in
the material. As two sound waves can interact only as a result of non-
linear processes a description of these effects must be based upon the
complete nonlinear hydrodynamics. Furthermore the interaction of sound
waves 1s strongest when the frequencies and wave numbers are in

resonarnce or

w(k) = w, +w, and k =k + Ky |, (1-1)

where w(k) is the dispersion law for the medium, and we have in mind an

interaction of two waves with wavenumbers kl and k2. Whether or not

the condition (1-1) can be satisfied depends crucially upon the dis-
persion in the medium i.e. on the second derivative of w with respect to

k which divides into 3 cases:

=3 > 0 upward or anomalous dispersion, (1-24)

—= < 0 downward or normal dispersion, and (1-2B)

—> =0 nondispersive (or so-called semi-dispersion). (1-2C)




For cases (1-2A) and (1-2C) resonances exist whereas for case (1-2B)
there 1s no resonant configuration for the three wave processes as de-
scribed by Eq.(1-1). Thus the nonlinear effects and therefore the
scattering of sound by sound is sensitive to dispersion so that a basic
description of sound interacting with sound must be dispersive as well
as nonlinear . We will see that for case (1-2B) the attenuation is
zero to this order whereas for case (1-2A) the attenuation is twice
that given by (1-2C) though there is a transition region. These three
cases will be used as a guide for understanding the attenuation of sound
in He4 at low temperature.

In the continuum mechanical approach dispersion arises from an
internal energy which depends upon gradients of the mass density. The
simplest model in which this occurs is that of particles on springs for

which the Lagrangian is

.2 2
L=zl lan, - ®ny o) ] (1-3)

where nj is the displacement of the jth particle of mass m from its
equilibrium position "ja" where "a" is the equilibrium interparticle
spacing and ¢ is the spring constant. We procede to the continuum limit

by setting
2.2 3

-n -‘aﬂnﬁia §.2a » ves
2 dx 6 ax

x = ja w/a = p, (1-4)
1

Z * - Idx

j a




so that

c- g fe {00 - 20y’ - Len)’) (1-5

where Pe is the equilibrium mass density and we have included terms
which are at most quadratic in "n" and involve no more than four
derivatives. A number of surface terms have been dropped in deriving

(1-5). The equation of motion implied by (1-5) is

ar 2049 2.2 o
n n c a n
-c - = 0 (1-6)
ac’ ax* 12 ax’
where . a2
c 0~
m

is the long wavelength speed of sound. The dispersion law implied by

(1-6) 1is

2

w Tk -=——— . (1-7)
Due to the kA term this system shows dispersion and this term arose

from contributions to the potential energy proportiomnal to (aznfaxz)

which is in fact the gradient in the density, or to lowest order:

2 1
b;,?_g,_ _ (1-8)
ax" ¥xop,
Using Equation (1-8) and
vedl g 2N (p=0e) ,
14 ox pe

the Lagrangian (1-5) becomes to order (o-oe)2

L= fax Y o -% (o-p )’ ¢-( ]]} . (1-9)




We see that for this simple model the potential energy terms which
depend upon gradients of the density lead to the dispersion.

To obtain the general nonlinear equations including dispersioo we
apply Hamilton's principle to a fluld Lagrangian density given by the

difference of kinetic (% OVZ) and intermal energy density U where
->
U= Ulp,s,%) (1-10)
so that

6](%9172 - U)dide = 0 . (1-11)

This, however, must be subject to the constraints of mass comservation
and entropy conservation which are not contained in the symmetry of the

original Lagrangian:

>
247090 and (1-12)
ot

dps > -

—— 7. s ( . -
™ psv (1-13)

Incorporating (1-12) and (1-13) in (1-11) with undetermined Lagrange

multipliers ¢, B leads to the variational principle:

8f{bv* - v+ o[200.03) + p[R223T 7l
E - +V pnv » FRYEY * D . - -
7 v P v v s] Y [at+(v v) ]}d rdt = 0 (1~14)

where we have included also the additional constraint om the identity

of fluid particles:
>
ax > »

-
3t T (vMX =0 (1-15)

10




or the change in initial location ¥ of a particle which is at "r" at
time “t" is zero if one follows the particle's motion. This may appear
tautological but is necessary to produce physical results if one per-
forms a variation where p,v are fixed at the endpoints rather than the
displacements.l3 Without (1-15) one obtains the restriction that
igsentropic flow must be irrotational.

Varying the independent quantities leads to

> Y et > >
dv: pv - pVo + BVs + Yivxi = 0

->
bp:lvz-a—u-n-v.-gj—-—a-g—*-
2 dp ] anp Y

(1-16)

->
§s: L., 38 + V-;ﬁ =0
ds Ot

. <>
s1: i L 7.3v.) =0
ot 1

whereas varying ¢,;,B leads to (1-12), (1-15), and (1-13). Combining

equations (1-16) leads to Newton's law of motion for the dispersive

continuum
>
av > p o] *a3u
—+ (v'P)v | » =9P + — |pV (1-17)
p( at ] 3dr lp 3(dp/3r;) }
where we have set
P=<-U4+opu+ psT+ V.p‘ég- s (1-18)
1 BVip

and introduced as an extension of the 1lst or 2nd laws of thermodynamics:

dU = pedp + Td(ps) + 2 4(7.0) . (1-19)
3v.p i

11




From these basic equations (1-12, 1-13, 1-17) we can derive the laws of

momentum and energy comnservation

- e o * +
Bovi , 3Bij u g and (dov?eu) +9Q=0 (1-20)
at dr. ac 2
j
where
2 au
P.. aPS,, + pv.V, = P e and
ij iy * P or; 3(3p/0r,)

Qi = (p + v2/2 + s'l')pvi - PV e+ —— (V:pv)

Note the stiess tensor is no longer diagonal so that Pascal's law is
not obeyed by a dispersive system. For isentropic flows (s=constant)
Kelvin's circulation theorem and Lagranges theorem follows as for non-

dispersive fluids. For s constant (1-17) becomes:

>
av »2 5 > au
—— .v » _v + s‘r - L O —
" + (v V)v (R 1.0
so that
—vz + 7Y + s'r - v R oa—U—-

is constant along a streamline and for irrotational flow:

+ 2

V=9 and %,y +|J.+3T-V.-ﬂ-—-constan: (1-21)
14 2 1 OVip

throughout the fluid.

12




Taking the time derivative of (1-12) and subtracting the diver-

gence of (1-20) yields

2 2
2
a_ﬂ -7 ps= 3 (pviv' - 99__:: (1-22)
3t ariarj J brj iP

We will be concermed with the leading effects of dispersion so we now

specialize to a system where
1 o>
U= Uo(p.s) * i*(p,s)(vp) (1-23)

so that 4th and higher powers of (Vo) are ignored, in which case

» 2

pelo, “Vp) z (1-24)
ap 69

au

— Y v -

29 (P)V.p (1-25)

PeP (p,8) + -(Vp) az’ . (1-26)

In the perturbation method that we will employ, the fluid varia-

bles are expanded in the series:

= . - n
P=pg+dn ;80 =] e
Vo= 5y ; &v = e (1-27)

s s ¢+ 8s ; 68 = ) ensn

where oe and s, are the constant density and entropy of the equilibrium
state, € is a measure of the deviation from equilibrium, and the set
of functions (pn'?’n' sn) are nth order corrections to be calculated inan
iterative scheme, The fluid variable expansions are substituted into

the fluid equations and since the quantity ¢ is by hypothesis small,

13




we demand that the equations be satisfied for each power of €. Iso-
lating terms of the first power in €, we obtain the linearized fluid
equations from which the first order solutiom (pl.;l,sl) is determined
subject to given initial conditions. The nth order equatioms are linear
in the functions pm,sm and ;m, and are comprised only of those om’sm’
and ;Q for which m is less than n. Thus, once the initial conditions
are specified we can determine ¢,s and ¥ to any order of approximation
by iterating.

The specific entropy is constant to all orders of approximation.

To prove this assertion consider the nth order equation for entropy:

++; »>
s: ’n vy sn_1 L R vn-V ’o = 0

If sm is constant for m less than n then %E-sm-o implying that L is
constant. Since the entropy at equilibrium S, is constant, s, for all
n is constant by induction. Thus the dependence on "s" will be sup~
pressed from now on. Equations valid up to second order car be obtained
be keeping terms of order (60)2. Expanding the pressure (1-26) we

obtain

2 2
‘ Jée + [g?".OIG](GZ) . %(:g'}e] (T80)", (1-28)

P'Pe* (22

Similarly for the energy density we have

3 3V, 228 a¥] (36p)36
p— —2 = (p¥) 2 QL) [eoe)see (1-29
arjbvip [br 6: } 69 (arlar ] peap e(bri arj )

so that (1-22) becomes (valid to second order im 80)

14




62 3 P 1 2
o
= — I} §5.. + v, ¢+
O6p) = 2 {[apz RECIEIRE XA
1]
1(3p¥ >\ dp¥ 626 d¥| 13p 3
p P o 3p 3
b o] — (va ) - 6 — —_— - | p— — } (1_30)
2[69 Ie] ° p(ap e’ dr;dr; dp elatiarj
where: )
3 2.2 4 _ 2 3P,
T — +cV +av , a= (p¥) , and ¢ E |—
. at PHe (39 e]

The underlined terms in (1-30) are nonlinear as well as dispersive.
These will be small for the cases which we consider as we will be
concerned with the leading effects of nonlinearity and dispersion.

Thus the equation which forms the main focus of this thesis is

2 2,2

0ep) = e {82 (2 70| s (1-31)

Q) = I ..+pv.v.}. -
dr;ar; 2 ‘apz e’ 1] e1)

The dispersion arises from ¢ (the dependence of U on (Vo)z) and the

nonlinearities are due to the doppler shift and the deviation from

Hooke's law. Employing the expansion (1-27) the equation of motion for

o, is:

1
Oey = 0 (1-32)

from which v1 can be found by

apl

7.2 (1-33)
Yy + peV vl =0

The dispersion law is from (1-32):

W e A ekt . (1-34)
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The equation of motion for P, is

2
3 1 2.9 P,
Oo. = & {_( 2 , B } -
P2 arior; \2 fy) [602 elézj P11 - (1-35)

and v, can be determined again from the continuity law:

3, * - 9.2 (1-36)
2 . Vep,v, = =p 9w

In Appendix A we use the first and second order equations to show
that a wave packet traveling in a given direction gemerally breaks
into two pieces: ome traveling at the long wavelength speed of sound
and the other at the group velocity of the wave packet. We calculate
the momentum, mass, and energy in these pulses and compare it to the
properties of fluid solitons which are quite similar except for sign
differences. The following table summarizes many of the properties of

the dispersive fluid pulses and sclitoms.

womentum/mechanical energy | mass | velocity
2 2
wave packet v A(v " -« ") >0 >e
2 8 3
"—f—>o
dk 2 2
soliton uA/(u” = ™) <0 <e
wave packet v _A/(v L cz) <0 <e
2 g 8
2J§<o
dk 2 2
soliton ua/(u” = ) >0 >e

In the table, vg and u are the group velocity and speed of the packet

and soliton, and p de

A o] ¢ =

¢ do

16




In Appendix A we also discuss the relationship of the pulse momentum to

the Rayleigh and Langevin radiation pressures.
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CHAPTER II

SCATTERING OF SOUND BY SOUND IN A DISPERSIVE CONTINUUM

In this chapter we calculate the scattering of sound by a back-
ground of sound and show how these effects are sensitive to the dis-
persion of the medium. We will use the dispersive fluid equations to
third order in the amplitude which involves therefore two iterations
of the perturbation scheme. We imagine that the background is made up
of a superposition of traveling waves and focus our attention on a
given impressed wave which interacts with each of the background waves
via the nonlinearities. At the first order of interaction the non-
linearities generate sum and difference frequencies of the impressed
wave and background. At the next order of interactiom there is
generated waves at the same wavenumber and frequency as the original
wave. This constitutes a correction to the original wave due to its
nonlinear interaction with the background and yields the attenuation.

For the impressed wave we take for the velocity and density:

> A - k >
v =k A ik r-i -2.,7.
a a exp(xka r wa:) + ¢c.c. and 6pa G Pa¥s ka y (2=1)
where c.c. denotes complex conjugate and wa(ka) is determined by /

(1-34). Similarly for the background we set
-> A > > k >
v(k) = kB(k)-exp(ik-T-iwt) + c.c. and 8p(k) = =-p vk . (2-2)

e

The first order equations are solved by the sum since superposition

18




applies in the linear approximation:

v, =v(k) + v, and o = 80(k) + &0
a l a

As we are interested in the change of doa due to the background we will
neglect terms which go as (tSoa)2 which are due to the self interaction.
Our assumption that the dispersion is not too strong or akz/c2<<1
causes the significant contribution to the wave scattering to arise
from nearly collinear waves.

To find the first nonlinear correction (pz,;z) we solve the
second order equation which is written below with the first order

solutions (2-1, 2-2) substituted:

2
Ooz = -2AaeABz (kai k) exp(iQt) +c.e.

+
where
2
3 2.2 “ p dc
=2 -7 + a¥v A=l =—
0= atz [ ’ ¢ dp ’

»> >
and Q, = (k% ®-r ~ (0wt wt .
b 4 a a

The particular solutions for (02,;2) are found by trying solutions of

the form:

>
py = 2 Vtexp(iQt) 4 c.c. and ;2 = 2 W, exp(iQ ) + c.c.
+ b 4 b4

and then solving for Vi and Wt. The homogeneous solution, which is a
solution to the linearized equations, is chosen sc that the whole
solution satisfies the initial conditions: the conditions being that
o, for n>l vanish initially since our first order solution is con-
structed to give the initial density and velocity fields. The whole

solution is found to be:
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Z t -> > ->
=
P2 pet (ka k)Rt +c.c., and vy = cz (kat k)Rt + c.c. , (2-3)
where

> > - (exp(-i(wazw)t)-exp(-imtt))
R, = -ZAAB(kat k)exp(i(kazk)'r)

: wtz -(mazw)z
and
t k) +» >
U.S.k-i-——w(ktk)
T fkar k a

That the sound wave amplitude must change in the process of pro-
ducing (02,32) can be proven using energy comservation. We find the
quantitative change from 03 which is determined by solving the third

order, perturbation equation:

? 2
o} d P -
R (A RCUCHREXURNRE NG S
1)

where we have ignored terms cubic in first order quantities since their
effect, which is studied in Appendix B, is to alter che sound wave speed
but not the amplitude. Also in Appendix B we show that there are dis-
persion effects that have a logarithmic dependence on the sound fre-
quency. The attenuation effects are stronger since they result from
resonant mode coupling at both orders of iteration.

The change in the sound wave amplitude is identified as the
amplitude of that harmonic component of Py which has the same wave-
number, frequency, and phase as the sound wave. This harmonic component
i1s generated only by those terms in the differential equation corre~

sponding to these same characteristics. Therefore, when we write the

20




equation (2-4) with first and second order solutions (2-1, 2-2, 2~3)

substituted, we remove all but the relevant terms:

Opy = -AIB 14p ck A exp(ik. -2ni ) Fa)-w
3 Pgck A exp(ik, r-wa:)-t ((wt+ w) - ua)Qt + c.c.

where

cos((we=waFwit) - 1

2
Q, = (k t k)
* a ((we? m)z—wi)'(mi =(wat w?)

The relevant solution, which is found in the same way as for 02, is
| 2l 22 Rt z
P3 = AlB apeck‘A exp(xka r-xwat)+ Q, *+ c.c.

The change in the sound wave amplitude is the amplitude of this

solution:

2 222
AA = GAIB lc“A k, {a_+q, ] . (2-5)

At resonance where m:-(wat w)=Q, the Q* grows quadratically im time

whereas off resonance the Q* is bounded and oscillatory. When disper-

akz

sion is weak ( 3 <<l), resonance occurs when the angle between the

c
directions of propagation of the sound and background waves satisfies

2 3 2 2 Ix 2
8 = :? (k‘* k) or (8-m) = :? (ka- k) ,

from which we infer that for resonance the waves must be nearly col-
linear and o must be nonnegative,

To find the change in the sound wave amplitude due to nonlinear
interaction with a background distribution, we integrate the change due

to the single background wave treated as a differential piece. To
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characterize the background, we let E(k,fi) be the background energy
density per unit wavenumber at k and per unit solid angle in the d
direction. We choose the amplitude B of the single background wave so
that its wave energy equals the background energy in the interval dk at
k and in the solid angle dQ at k. Since the wave energy density to

second order is % oeIBlz, we choose B to be given by

2 2 A
|IB | = = E(k,k) -dk-dQ
Pe

Using (2-5), we integrate the effect of this differential piece to find

the change in the sound wave amplitude due to the background distribu-

tiom:
2 22
8A = A= Ak [dk ] I
3 a Q+
e *
A
Where Igz - Idg E(k,k) 'Q+

The angular integration can be approximated for long times because
the quantity Q* becomes peaked about resonance. Since the main contri-
bution to the integral comes from a solid angle centered at resonance
and whose width is inversely proportional to time, we can approximate

the integral by expanding the integrand in the angle about resonance:

A
I“ 16900, —ELOO sin®( (~P+8%/2 + R)t/2 )
: -] d8.gmp. ——y=—
s 0 bkge” (kgt k) (-Pe82/2 - R)

where

= ikligt k.
2c

ckiey
P, and R

B csee——
= kgt kl

"
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Using the substitution y =- % P:62+Rz and for large times letting the

Py

upper limit of integration extend to infinity, we are left with

2

x A
IQ: = -C'EP—-'E(k,ka)‘I (2-6)
*
where
2 ° sinz( ) ‘
R, t/2 7

For times such that |[tR,| >> 7, the value of I depends on the sign of a:

if a <0, them I

w
o

w
[ )

ifa> 0, them I

When ith[ << ™ or if aw0, then I=l,

That Westervelt's prediction for the attenuation of sound in
liquid helium is for some cases roughly half the experimental value is
simply explained by the semsitivity of the attenuation upon the nature
of the dispersion.l“ Using the result (2-6), the change in the sound
wave amplitude due to the background is AA = ~tAB, where 8, which is

defined as the attenuation coefficient, is given by

2 2
| ® (kg* ®) A (kg= k) A
Blkg) = —S—-p 1{ I 2 E(k,kgq)dk - I ~2 E(k,kgq)dk
Zpec . k
a
k& (kg- k)2 A
+ I 2 E(k,kgq)dk } (2-7)
0 k .

Treating thermal motion as the background, Westervelt used nondispersive

hydrodynamics for his prediction for which a is zero and the value of I
4

is unity. However if a>0, then the value of I can double.

The attenuation coefficient (2-7) has three terms each of which
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corresponds to a specific process. The first term is the attenuation
due to those nonlinear interactions for which the sound wave and the
background waves interact to produce waves at the sum wavenumber (i+§a).
The second and third terms correspond to the processes that produce
waves at the difference wavenumber (‘ia-i). The second term, which is
the contribution from those background waves for which ka>k, is negative
and therefore the sound wave is amplified in these processes.

Media for which ®>0 have a dispersive nature that has been labeled
2

anomalous. Our experience with most materials is that é—% < 0, however
dk
upon examination of the dispersion relation (1-34) it is evident that a
2
positive o implies that 9—% > 0.
' dk

5 {ndicate that the dis-

The specific heat measurements of Greywall
persion of liquid helium at low pressures is anomalous for long wave-
lengths.

With the implications of the specific heat measurements at high
preSSures,s we can explain by using our calculations why the attenuation
of sound in liquid helium decreases dramatically when the pressure is
ralsed past 18 atmospheres. The specific heat measurements show that
the dispersion of liquid helium becomes normal (a<0) at pressures above
18 atmospheres. However if a changes from positive to negative, our
calculations have shown that the value of I, upon which the predicted
attenuation 1s proportional, drops approximately from two to zero.

For long times the decay of the sound wave in the presence of a
background is exponential. Though in our perturbation scheme we

implicitly assumed that the sound amplitude was nearly constant, we

extend its validity by taking the amplitude to be time dependent. Then
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in the interval (t,t+dt) the change in the amplitude is given by the

differential equation:

dA = -B-A(t)dt ,

which is integrated to give A(t) = A(o) e‘Bt.

The attenuation of sound in liquid helium at low temperatures is
understood as resulting from the nonlinear interaction of the sound
with the background of thermal motion. It is knowm from statistical
mechanics that the thermal background is isotropic with the energy
density per unit wavenumber given by the Planck distributiom.

To obtain a numerical value for the attenuation of sound in liquid
helium at low temperatures, we will insert into our calculated attenua-
tion the values for the speed of sound (¢), the density (p) and the
Gruneisan constant (A) which are given by the experiments of Abraham

et al.15

The predicted attenuation will then be compared to the experi-
mental result56 for which the attenuation was measured for sound fre-
quencies between 10 and 260 megahertz, temperatures between .l1° and 1°K,
and pressures between 0 and 25 atmospheres.

For the range of frequencies and temperatures covered by the ex-

periments, the expression for the calculated attenuation takes the fol-

lowing approximate form:

P

® A b

B (—s2) W, . (2-8)
15peh ¢

where kb is Boltzmann's constant and h is Planck's constant. The
simplification arises because in the experiments the sound frequency

hw
and the temperature satisfy the condition: ka << 1. This condition
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implies that most of the energy in the Planck distribution resides in
wavenumbers much greater than the sound wavenumber, which allows us to
take as zero the value of the sound wavenumber as it appears in the
limits of integration in the attenuation expression (2-7). The attenua-
tion then becomes proportional to the total energy which is given by
statistical mechanics.

Using the experimentallv determined values of the bracketed
quantities in (2-8), we find the predicted attenuation coefficient for
sound in liquid helium at zero pressure as a function of frequemay (in

radians per second) and temperature (in degrees Kelvin) to be
- "
B = 1.5x10 ImaT (dB/cm)

Figure 1 is the plot of the predicted (I=l and I=2) and measured
attenuations versus temperature for a 15 megahertz sound wave in liquid
helium at zero atmospheres. (The figures are on pages 29-32.)

Figure 2 is a plot of the measured attenuation versus frequency at
zero atmospheres and .2° Kelvin. The solid lines are the predictiouns
of our calculation (I=2) and Westervelt's (I=]),

Figure 3 displays the measured and predicted (I=l and I=2) atteru-
ations versus pressure for a 256 megahertz sound wave in helium at .22°
Kelvin.

Figure 4 shows the measured attenuation versus temperature for a
15 megahertz sound wave at a pressure of 25 atmospheres. The predicted
attenuation is zero beczuse the dispersion is normal (a<0) above 18
atmospheres. For temperatures above ,6° Kelvin, the attenuation is not

zero as predicted because the sound is interacting with "rotons" which
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are high frequency thermal components whose energy grows rapidly with
temperature.

We can explain by considering bandwidth effects why the experi-
mental points in Figures 1 and 2 might lie between our prediction (I=2)
and Westervelt's (I=1). Bandwidth effects result from the uncertainty
in frequency inherent in any decaying waves. In our case both the
sound and thermal waves are decaying and if these decays are large then
the approximations made in evaluating the integrals over the background
distribution become poor. In Appendix B, we use a Green's function
technique to show that the effect of this bandwidth is to multiply our

calculated attenuation by the factor:

2
1 2 3 (27kpT
E{ 1+ ;-arctan(ia — ] watl } .

where T is the lifetime of a typical background wave. Including this

factor, we find our attenuation is equal to Westervelt's at frequencies
T
where a{———}war<<l and is twice Westervelt's at sound frequencies where

he
the inequality is reversed.

The frequency dependence of the attenuation predicted by using the
bandwidth effect does not agree with the experimental points of Figure
2. Possible explanations for the discrepancy between theory and experi-
ment may arise from considering the following: misinterpretation of the
data, long thermal lifetimes, or attenuation due to interaction with
second sound. For the first point, the experimental data may have
systematic error because to find absolute attenuations, risky assumptions

were made about the temperature dependence of the attenuation?

Secondly, it may be incorrect to assume as we did in calculating
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the bandwidth effect that the thermal lifetime is shorter than the sound
wave lifetime. Although the dispersion in liquid helium is anomalous at

low wavenumbers, it is always normal at sufficiently high k. Thus there

2
is an inflection point Filg -0] at some finite k-ki. If the background
dk

is concentrated at wavenumbers greater than ki’ then the background
would be quite long lived, perhaps with a lifetime longer than the
impressed sound wave. This case would correspond to a dispersion rela-
tion such as w2=c2k2+ak4-a'k6. Although the results will be different
from those calculated here we believe that the same procedure will work
and may account for the discrepancy.

Finally there can appear in the distribution of sound waves com-
pressional modes of the local emergy density or so-called second sound.
The appearance of the new mode is a spontaneous symmetry breaking in
the nonlinear hydrodynamics. Now there can appear new nonlinear pro-
cesses in which the sound wave interacts with second sound and that
can still further complicate the comparison of these results with the

properties of liquid helium.16
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CHAPTER III

BOLTZMANN EQUATION FOR SOUND

In the last chapter, where we considered the nonlinear interac-
tion between a sound wave and a background, we assumed that the back-
ground energy distribution was constant in time. In this chapter, we
determine the nonlinear self-interaction of an isotropic background,
and express how the background distribution changes in time via a
kinetic equation derived from the hydrodynamics. If we impose a Debye
type cutoff, the statiomary background distribution of the kinetic
equation is a "white noise" distribution. Next we present a reasonable
method of adding the zero point motion contributions to the kinmetic
equation. The form of the zero point distribution is determined using
the kinetic equation and a law analogous to Wien's law for radiationm.
With this form, the improved kinmetic equation has a stationary solu-
tion that is a Planck distribution. The chapter ends with the presen-
tation of a classical H-theorem and a discussion of some effects of
zero point motion.

To simplify the discussion we will impose the restrictiomns that
the medium be nondispersive and that the background be low enough in
energy so that its self-interaction can be considered as being the
collection of binary interactions between the harmonic components that
constitute the background.

Our immediate goal is to derive a kinetic equation which gives

the time rate of change of u(k), the background energy per unit
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wavenumber at k or so-called spectral intensity. This background
energy at k changes not only by its direct interaction with the rest
of the background but also by restituting processes resulting from the
binary interaction of other background pieces. The change due to
direct interaction 1s determined directly from the attenuation of sound
calculated in the last chapter. The effect of the restituting pro-
cesses 1s found with the additional use of energy comservation which is
a property of the nonlinear continuum mechanics.

For an isotropic background, the time rate of change of the back-
ground energy at k due to direct interaction is the same as that of a
sound wave of wavenumber k and equal energy. Having shown that for a

sound wave the rate of change of the density amplitude, A, is given by

d

:: A(ka) - - B(ka)A(ka) y
and knowing that energy is quadratic in amplitude, we deduce that the
time rate of change of the background energy demsity u(k) for direct

interaction is expressed by

4wk = -28(0)u(k)
14

where B(k) in terms of u(k) was derived in the last chapter:

- 2 k 2 2
B(k) = —= .‘.z{j (lerq) u(q)dq + I Leg) u(q)dq - I {k=q) u(q)dq}.
q , 4 « g

8pg¢c .

To complete the kinetic equation, we must. find the rate of change
of the background energy density due to restitution. When two waves
interact they produce waves whose wavenumbers are equal to the sum and
difference of the wavenumbers of the interacting waves. It follows

that in a restituting process, the background energy at k changes
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because the wavenumber k is either the sum or difference of the wave-
numbers of many pairs of directly interacting background pieces. The
changes due to the sum and difference cases will be treated independ-
ently and will be calculated for single pairs of interacting background
pleces by using energy conservation from which we know that the energy
gained in restitution is the energy lost by direct interaction. The
total restituytion will be given by an integral over all possible in-
teracting pairs.

We begin by focusing on the single sum process in which the back-
ground energy in the interval AK at wavenumber (k-q) interacts with the
energy in the interval dq at q to restitute emergy to the background at
the sum wavenumber k. The time rate of energy 1035 of these interac~
ting waves can be obtained by dissecting our kinetic equation for

direct interaction, which is

:—E ulk) = -28(k)ulk) . (3-1)

The attenuation coefficient for a sound wave of wavenumber k resulting
from just sum interaction with a background is given by the first term

in the brackets of the expression for B8(R):

- 2
Pam® =3[ B u(@dq |, where Q= Z=1"

eC
Singling out the contribution of the emergy in the interval dq, sub-
stituting into Eq. (3-1) and letting K=k-q, we find that the time rate
of change of the background energy in 4K at (k-q) for our single sum

process 1is 2

2 u(k=q)8K = -Q £ u(q)dq u(k-g)aK
dt q
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Likewise, the rate of change of the energy in dq at q is
2

:—: u(q)dq = -Q u(k=q)AR u(q)dq

k
(k = q)
Since the energy lost by both waves in direct sum interaction is gained

in restitution in the interval AK at k, we deduce that

2
d [
— k) = ——— -
P u(k) = Q O u(k-q)u(qldq

Integrating this expression over all possible pairs of interacting
waves, we have the rate of change of the background energy at k caused

by the restituting sum interactions:

k/2 3

O u(k-q)u(ql)dq . (3-2)

d

— u(k) ] I
dt Q 0
The contribution to the kinetic equation from the restituting dif-

ference processes, which is calculated in the same manner as the sum

processes, is

- 3
u(k+q)u(q)dq . (3-3)

d [ k
— k) =
dt all) = Q o q(k + q)

In calculating this contribution, we use the attenuation coefficient for

sound interacting with a background via difference processes:

k 2 - 2
8. (k) -9{ k=) (ydq - | E=@ yqraq) . (3-4)
dif 2 0 q " q

The significance of the two terms is that when two waves interact in a
difference process, the wave of lesser wavenumber gains emergy while
the wave of greater wavenumber loses.

The complete kinetic equation obtained by adding the contributions

of the direct process (3-1) to that of the sum and difference
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restituting processes (3-2, 3-3) is

14 -{ Bk ulk) + f i u(k-q)u(q)dq +
Q dt 3 o qlk - q)
- 3
. Io m%;—)— u(k+q)ulq)dq } (3-5)

We will refrain from application of this equation uatil we improve it
with the inclusion of zero point motiom coutributions. However, we
mention that if a wavenumber cutoff is imposed amalogous to that which
Debye argued for solids, then the kinetic equation has a statiomary

distribution ({.e., éﬁékl = Q) of the form:

2
u(k) = constant x k ,

which 1s representative of the statistical mechanic notion of equiparti-
tion of emergy.

Our attention is now directed toward determining how the kinetic
equation is altered by zero point motion. Though the effects of zero
point motion has traditionally been thought to be outside the domain
of classical physics, we will show that it is possible to introduce
zero peint motion in a classical vein. The zero point motion 1s postu-~
lated as an immutable energy distributed uniquely over all wavenumbers,
existing even in the absence of thermal motion, but nevertheless able
to interact in some restricted sense with other waves,

The implementation of our postulate becomes apparent when we con-
sider a sound wave in the presence of a zero point wave. We would like

to treat the interaction of the sound wave with the zero point wave in
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the same way as any two waves, but since the energy in a channel which
has only zero point energy cannot diminish, we must somehow restrict
the interaction. For the case of two waves interacting in a sum pro-
cess, both waves lose energy; therefore if one of the waves is a zero
point wave whose energy cannot diminish, the sum process must be elimi-
nated. In the difference process, the wave of lesser wavenumber gains
energy and the waveé of greater wavenumber loses. As in the sum process,
the possibility that a wave of greater wavenumber in the difference
process be a zero point wave must be eliminated, but we may allow a
sound wave to interact with a zero point wave of lesser wavenumber if
the energy normally gained at the zero point wavenumber is placed into
sound wave energy at that wavenumber.
To calculate the zero point contributions to the kinetic equatiom,
we utilize that the interactions of the background waves with the zero
point waves is just a subset of the interactions of the background
self-interaction whose contributions to the kinetic equation have been
calculated. The time rate of change of the background emergy at k
caused by zero point motion 1s due to difference processes of three
types:
1. The direct interaction of the background energy at k with
zero point waves of wavenumber less than k,

2. The direct interaction of the zero point energy at k with
background waves of wavenumber ﬁreater than k,

3. Restitution from the background energy at (k+q) interacting
with the zero point energy at q (for all q).

For each of these types, the time rate of change of the background
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energy at k caused by the background has been calculated to be, respec~

tively,

»

k 2
W) - ulk) } 5—“-—};—-9-’- u(q)dq
1]

- 2
(2) (k) [ «-(-[S-é-s-)-u(q)dq

k

- 3

(3) ] k (k+q)ulq)d
o a(k + q) ulkrq)ulqldq

As an example of how this procedure works consider the change in
energy in channel k due to sound in channel q<k due to differemce pro~

cesses:

2
d -
&= u)dk = - —‘1‘—3-32- u(q)dq uw(k)dk |, (3-6)
where we have used (3-1, 3~4). Similarly for ¢>k, we have

2
%:' o(Qdq = Q ‘—“f—‘l’- a(k)dk ulq)dq . (3-7)

Next on the right hand sides of thcse expressions we replace u with u+v
and focus atteation on the contribution linear in the zero point energy
per unit wavenumber, which we will label v, (the terms quadratic in u

have already been incorporated into (3-5)):

2
'3'{ w(k) = —Q EL;—&’-[ wW(Qv(k) + u(kIv(q) | dq (3-8a)
4 k- )
:: u{g) = Q . [ u(qlv(k) + ulk)v(q) ] dk {3~8%)
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so that from (3~8a) we see that the process whereby a zero point fluc-
tuation of wavenumber k interacts with an excitation of wavenumber q is
forbidden since it removes energy from channel k. Deleting this term
from (3-8a) and (3-8b) yields direct and restituting contributions to
the change in energy density given by expressions (3-6) and (3-7) above
with u(q) replaced with v(q). Replacing also the background energy
density of lesser wavenumber in the B8(k) in (3-1) with the zero point
energy demnsity (i.e. u(k)~#v(k)) we find the zero point contribution to

the kinetic equation which combined with (3-5) yields the complete

k 2
1d (k=q)
1d 9 -l Ue=q)’
2w = { u(k)[B(qk) . Io =2 v(q)dq) +
k/2 3 - k3
w(k~q)u(q)dq + [
/utalda 0 q(k*Q)

3

kinetic equation%7

IO q(qu) u(q)u(k+qldq

- 2 [}
G s + |

. (k)]
) o a(k+q)

v(q)u(k+q)dq }.
k

The stationary solutiom of the kinetic equation is the background
equilibrium distribution. To find this stationary solution, we must
first determine the form of the zero point distribution.

Using the kinetic equation and a fluid law analogous to Wien's law
for radiation, we are able to show using the second law of thermody-

namics that the zero point distribution is of the form:
3
v(k) = Ack ,

where A is an undetermined constant. The fluid law, which is proven

in Appendix C, states that the background equilibrium distribution

must have the form: 3
u(k) = ck f(ek/T) |,
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where the function f is as yet unknown. Substituting this form into
the kinetic equation we find that all the terms involving quadratic
powers of u yield expressions which are homogeneous functions of T and
k of the eighth degree. That is replacing T and k with aT and ak yields
aa times the original expression. Thus if there is to be a non=~trivial
balance between the zero point terms and the thermal terms the expres-
sions involving v must also be homogeneous of degree 8 which means that
v is proportional to k3.

The equilibrium background distribution, which is the stationary
solution to the kinetic equation subject to Wien's law, is a Planck
distribution:

3 -
u(k) = 2Ack (exp{yck/T) ~ 1) ! )

where ¥ is a second undetermined constant. That this is a stationary
solution to the kinetic equation can be shown directly with the follow-

ing identities:

£(q) E(k+q) = £(K)£(q) 2 £f(k)£(k¥Fq) * £(k+(qtq)/2) ,

1

where f(k) = (exp(ak)~1l) ~. Of the two constants, A and Y, only one

must be found by experiment since at high temperatures the equipartition

of energy determines the ratio:
ky
- —2

2z

=< |»
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Einstein and Stern18 by considering the scattering of a charged
particle by an electromagnetic field attempted to derive the Planck
distribution from classical mechanics by assuming a particular zero
point noise spectrum. Their results were off by factors of two. Here
by considering self-consistently the scattering of sound by sound we
have arrived at the proper thermal distribution as well as the zero
point spectral intensity. These arguments have now been extended to
the nonlinear electromagnetic equations by Roberts.19

That an "H-theorem" exists can be proven with the kinetic equation.
If we let B be defined as

-
H= fo d(lak){ (u(k)+2v(k)) - 1a(u(k)+2v(k)) - u(k)-In(u(k)) ] ,

then using the kinetic equation and the cubic form of the zero point

motion we can show that

K
-1 -
C): lQ I dK I dq ulq) u(R)u(R-q) (a-b)1ln(a/b) ,
0 0

de 2 A% qR(R~q)
where
. &-9)° 3
- q . -9/ )
a 1+ 1+ and b = +
( ) ( ) (1 + K /u(R))
Since the iqcegrand is always positive, we conclude that %% 2 0, which

is the H theorem. Demanding that H is stationary and imposing Wien's
law for fluids, we again obtain the background equilibrium distribution.

As a final application of the kinetic equation, we calculate the
attenuarion and decay spectrum of a sound wave interacting with zero
point motion. The sound wave is represented in terms of u(k) as

follows: u(q) = ugbl(kg- q) ,
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where u, is the sound wave energy and ko is the sound wavenumber. Sub-
stituting this u(q) into the right hand side of the kinetic equation,
we find that the first zero point term gives the attenuation of the
sound wave:

8% . uoggg'ks S T

dt @ 480pgr® 0 '

and the last two zero point terms give the spectrum of decay:

dug 2
” ® wQAc (kg - k) k /ky for k<k0 and zero for k>k0.

Landau and Lifshitz have suggested that zero point motion effects
for macroscopic variables can be calculated by simply adding the zero
point energy to thermal energy. However, this method would yield an
infinite sound attenuation in contrast with the method presented in
this chapter for which the results agree with quantum theoretical
calculations.

The =pontaneous decay of sound was measured for the first time in

Oin an experiment in which high frequency sound was generated in

1981°
doped calcium fluoride through the use of laser pulses to stimulate
non-radiative transitions. The sound waves were detected through the
fluorescence they induced in the stress-split energy levels of the
Euz+ doping ions. Phonon lifetimes were obtained from the time de-

pendence of the fluorescence radiation and followed the ks law.

43




APPENDIX A

RAYLEIGH, LANGEVIN AND SOLITARY WAVE

RADIATION PRESSURE IN A DISPERSIVE CONTINUUM

In this appendix we use dispersive nonlinear hydrodynamics to

determine the motion and integrals of the motion for localized travel-

ing disturbances in one dimensional continuocus media.

Consider a disturbance which at first order can be expanded in a

Fourier integral

pl(x,t) = I dk-pl(k)exp(ikx-iwt)

-

with

w(-k) = —w(k) and p (-k) = pf(k)

so that the disturbance propagates in the "+x" direction.

I (x,0) = [ dieJ) (K)exp(ikx-iut)

- f dk wik) P, (k)exp(ikx-iwt)

The inverse formula is:

1 -
Dl(k) = ;; I_.dk-pl(x,t)expéikx)
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Substituting (A-1) into (1-36) yields for the second order contributionm

to the density

2 2
o, 228, 2 amp?

. > - [[ dkdk Alk,k")exp(i(kek')x-i(wsw')t) , (a-2)
ot dx Bx

where

<2A
Alk,x') = =(k+k' ) e pl(k)pl(k )

de

—

and A=1+ .
P

oo

The solution for 02 which vanishes at t=0 and corresponds to a wave

moving in the same direction as the original pulse is:

A(K, k' )exp(i(kek')x)

3 > {exp(~i(w+w')t)-exp(-iw(k+k')e)}
“(urw') "+ (kek') “+a(k+k')

P, " ([dkdk' o

which is made up of a particular plus homogeneous solution to (A-2):

P2 % P20 " P21

Similarly
J2° 2,0 % 20
5, = I[dkdk' A(Eif'):gg(i(k;k')x) .,
=(wrw') e (kek') “+a(k+k')
{ ;—:'exp(-x(w»w t)- 2%55&%;exp(-iw(k*k')t))

where in each case the term in exp[-i(w+w')t] is the particular solution.
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The distinction between homogeneous and particular solution has a
physical as well as mathematical importance. The frequency and wave
number of the particular solution are not related by the dispersion
relation (1-34). Therefore the particular salution is a property of
the traveling first order wave. It is nonzero only in those regions
where the first order disturbance is nonzeroc. The homogeneous solution
however is an actual sound wave that propagates at the phase velocity
w(k+k')/(k+k') and can therefore separate (for dispersive systems) from

the original first order disturbance.

By choice of the initial condition

dx =
Ipz x=0 (A-4)
but

IJ dx = 23A < Jdk lpz(k)! (a=5)

2 Pe 1
c2 2 2 2

fo pax = 2ea £ fa fofaolecguo - & (A-6)

f 2 2 2 2

3, jax = 2m —p-Jdk 0200 [vg )+ vE(0) - c2) (a-7)

where the group velocity vg-dw/dk. Expanding the energy demsity (1-23)

to second order:

1 2 1 2 2
[vs3p? ], = e, + (/20002 + 30,v2 + 32 (%0 )7 (a-8)

leads to an energy due to the sound field:
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L

fax{ v + %pvz 1, = fdxp, + [dx-pevf

29c?

e Idklpfl(l#akz/cz). (A-9)

® u'ejdx.pz *

From (A—4.5,9) we find to leading order (neglecting corrections of order
akzlcz) that the ratio of total emergy to total momentum of the sound

field is
2¢

e ————

L+ g de (A-10)

c dp

which is the result first presented by Rayleigh.Zl Contrary to many
referencesl'z2 the ratio 1s not ¢ (except for a monatomic ideal gas
which has the equation of state: PV3-CONSTANT). The following comment
should be made about our calculation of the energy and momenctum of sound
waves. We have considered only those effects which are second order in
the field. It is entirely possible that the first order solutions ol,Jl
will have a net mass, energy and momentum. However, we have here
focused upon the quadratic contributions since those are intrinsic pro~-
perties of the acoustic field when the system is driven in an oscil-
latory fashionm.

The momentum of the acoustic field (A-5) is proportional to \ and

vanishes when the equation of state is such that
¢ = constant/p

For a one dimensional lattice of masses on harmonic springs we have

seen that c=/8/m a =/%m/p which provides the proper explanation of
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the statement that ''phonons have no momentum.” Normally this assertion
is based upon the reasoning that in a crystal lattice as a wave passes
each particle returns to its initial location and therefore the wave
carries no momentum.23 However, the fact that there is no drift in
particle position merely requires fJdt=0 which 1s quite different from
the momentum of the wave which is given by fJdx which is proportional
to A and vanishes, only for the particular equation of state appro-
priate to the usually quantized harmonic lattice.

Next consider a first order disturbance which is peaked so that
its spread in wave number is much less than the wave number "ko". The
homogeneous solution will separate from the dis:urbance3 and its
particular solution so that in time three pulses will appear: ome with
a mass and momentum given by (A-6,7) traveling at vg, another with a
mass given by the negative of (A-6) and a momentum given by the dif-
ference of (A-5) and (A-7) traveling at ¢ and finally a pulse traveling
at vg(Zko) which has zero mass and momentum to this order. These
assertions follow directly from substituting a peaked distribution for
Dl(k).

Even when there is no net mass in the original disturbance, the
dispersion separated pulse contains a net mass given by (A-6). Thus
the total energy of this pulse involves the chemical potential (a-9).

Neglecting corrections of order akzlcz in (A-9), we find that this

pulse has the total energy:

2%c? I 2 { e }
5 1k 1+ (A-11)
Pe Ipll vd - 2 .
-4
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An important distinction can be made as regards the two terms that con-
tribute to the total energy. One of the terms (the first im the inte-
gral) should be regarded as a mechanical energy since digsipative pro-
cesses can eventually convert this part into heat. The other term (in-
volving ue) will always remain at this value regardless of the irrever-
sible effects., Forming now the ratic of momentum to mechanical energy

for the separated pulse we obtain

vs(ko)A

2 2 . (A-12)
vs(h) - C

We note that when v8<c, 02 p<0 and if vg>c, o} >0 and the pulse moves

2,p
faster than c.

Bassett and Pryce3 considered the quantum theory of one dimensional
dispersive waves in an anharmonic lattice. Though they obtained
Eq. (A~12) they did not mention the pulse traveling at vﬁ(Zko) probably
because in the quantum perturbation scheme employed by them the expec-
tation values of energy, momentum vanished for that pulse. Furthermore,
the contributions to the total energy proportiomal to u, were not in-
cluded in their work. This difference comes about because they con-
sidered the propagation of sound relative to an equilibrium lattice that
i3 unstressed. For such a lattice ue-o; as can be seen from the rela-

tion (VIZ: 18)
E=UV =M ~-PV |,

where E,V,M, are the total energy, volume, mass of the system in the
mechanical equilibrium state (ﬁp-O). As 1s commonly done we take E=0
for the mechanical equilibrium state. Thus if P is also zero in this

state we find that u must also vanish,
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Had we included the underlined terms in Eq. (1-30) and so cal-

culated corrections to the momentum (A-5) of order aki/cz we would have

found
Peks [ v d¥p’
Id"Jz = ?{A * Lz [p 4% _ 3 yA]}Idepf(k)l (A-13)
e 2c do 2 &

where of course (pi(k)) is peaked near ko. The corrections proportiomal
to kg still vanish for the 1D harmonic lattice because in that case
?-a/owaswl/os. In general the termé will not vanish.

The relation (A-12) for the ratio of momentum to energy has

strong similarities to the properties of soliconsza which are solutions

to Eq. (1-36) in one <imension that have a stationary form:

I Sp (x=ct) (a-14)
From the continuity law this requires the mass flow to be

J(x=ut) = ubp(x-ct)

so that Eq. (1-36) yields

2
2 2 3" 60 c2 de ul 2
(W = c%)8p + g =X =l [gﬂ— —]6 -
) Pe \ € ap + 2 (6p)° , (A-15)

where terms cubic in §p have been dropped along with two space deriva-

tives. This can be integrated directly to yield

1
3(e? - ud)p 2 c? - u? )2
8p 8 - cm———l O ———— - -
0 v sech {[ ry ] (x ut)} (A~16)

where we have taken a>0 so that u<c, Thus when the sound pulse travels

at V8>c the soliton moves slower than ¢, so that the mass contained in
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the sound pulse has opposite sign to that of the soliton. From (A-16)

we see that the small quantity for a soliton is c-u. If we set

E_E_l‘. =g <1 (a-17)

then

5p(0,0) = - gﬁﬂ € + higher orders in €

2 2
% . 3pct € + higher orders in ¢ (A-18)
ax? aA

so that differentiation of some property of a solitom increases its
order of smallness. For a sound wave both amplitude and phase are in-
dependent but for the soliton the two are related by the requirement
(A=14). 1In view of (A-17) we were justified in substituting ¢ for u on
the right hand side of (A-15) in order to arrive at (A~16) valid to this
order of accuracy. Similarly to the order of € used here the underlined
terms in Eq. (1-30) are higher order.

The momentum of the soliton is

]dx.r = ufdxsp = __L%zfdxwp)z . (A-19)

1.12°C

Introducing the mechanical energy as before we find that the ratio of

momentum to mechancial energy for a solitom is

ul
uz - cz *

(A-20)

With a>0 a soliton exists with negative mass moving slower than c.
There is another wave packet which has kinematic properties very similar

to this soliton (see Eq. A-12) which moves faster than ¢ and however
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spreads (disperses) very slowly in time. The inverse scattering
method 25 makes very general statements about how initial disturbances
evolve into solitoms. If the initial pulse has the appropriate sign
then at a sufficiently later time (neglecting dissipation) at least one
soliton must appear. Thus one might wonder if the dispersion separated
pulse will eventually turnm into a soliton. The answer, however, is no
for as we have seen the net mass in the acoustic pulse has opposite
sign from the soliton appropriate to the given sign of a.

Another quantity of interest in acoustics is the so-called Langevin

radiation pressute26 which is the net force exerted on a unit area of

side wall as a wave runs down the tube:
F = [aecsp)

where to second order the pressure is

dc 2 1 dp¥ 2
GP-CZp +c—p, + === (Yp,)
2 dp 1 2 0 1

Using (A-3) for o, we find for F

2 L

[ de 2
F. = - g—- ] .
L= Pel < a9 1 Idk pl(k)

which is the usual result. The contribution to the Langevin pressure

from the dispersion separated pulse is given to usual order of accuracy

by:

2[4 de (4e.02
FL P = ¢ [d: pz,p +c 0 Id: G
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kZ deS

A+ ey —
= 2:[ { ct 2¢4p? do . e 2 }pf(k)dk. (a-21)

Pe ¢ (v2 - ¢2) oo
g 8

To leading order in cxkzlcz the term in A dominates the others. We have
included the term in dos‘{’/do which comes from the underlined term in
Eq. (1-30) since it is of the same order in akzlcz as the usuyal term
cde/dp. For a harmonic lattice the term in cdc/do is the leading term.
It must be noted that although this result becomes singular ‘in the
limit vg-»c it also requires more and more time for the wave packet to
separate in this limit.

A connection can be made between the nonlinear continuum coef-
ficient A and the anharmonic terms in the one dimension lattice.

Generalizing (1-3) to:

L=J2%2 .y (A-22)
j 2 3
where the potential energy is
[ _J -» °n
Ve — (x. -x, - a,)n (A-23)
n§2 iZI ut t 0

where xi-po'sition of the particle which in mechanical equilibrium is
located at "iao" where a is the unstressed (P=0) equilibrium separa-
tion. By definition the 0n are independent of "P", If a steady ex~
ternal force "P" acts on this system the equilibrium spacing will change

to "a" such that

o -
Pe-)] —B _(a-a) (A-24)
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determines a(P). The speed of sound for this cne dimensiomal anhar-~

monic lattice is

= :—: T 7:72:—: ) ﬁzn:z (nf:n (a - 8™ (a-23)
and
1+f..d_°..1-id_°.-._‘?. g (a—ao)n—3 . (A~26)
¢ dp € da mc2 g3 (n=3)!
In the stressed lattice we can refer the X 47X tO the separation "a"

by rewriting (A-23) as

- .
v = 2 2 --(x -x. -a+a- ao)“ (A=27)
a=2 j=) 0! t

and using the binomial expansion coefficients S to write

. s 2o4(a) ( a
v L Xipp "% " @ ) (A-28)
where
dy(a) T Oy m-n
—Tﬂ_ mzn ;!— Cm(a 80) (A-29)

yields the effective spring constants of the stressed lattice in terms

of the spring constants of the unstressed lattice. In particular

On 2
9,(a) = anz = cgofa - ao)m_ and
_ Sm -3
9,(a) = 6 E = cms(a -a) s

w3 @
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and the term in ¢° adds a constant to the potential whereas the term

in ®l corresponds to a telescoping series which also contributes zero

to the potential. Note also that:

3% (a) 391 (a)
™ - Ol(a) . = @2(3)
Since
Ql(a) s -p

we find for the sound velocity
cza_a.
m

Qz(a)

and for the Gruneisen coefficient

A.1+gic---a°3(a)
< dp 289 (a)

3®,(a)
, and = & (a) (A-30)
da 3
(A=-31)
(A-32)

which relates the hydrodynamic nonlinear parameter to the cubic anhar-

monic coefficient of the lattice for the one dimensional problem.

A precise transition from the Lagrangian (A-22) to the nonlinear

hydrodynamics can be made by replacing

-4

ox _ Pe

Y *]

x(x+a) = x(y) + a o= + e
A

where x(x,t) is the location of a particle at time t which was at

point ¥ at time "0", so that

"= bl
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APPENDIX B

THE EFFECT OF DECAY BANDWIDTH ON ATTENUATION

In the second chapter, we calculated the attenuation of sound due
to nonlinear interaction with a background and showed that the magni-
tude of the attenuation was sensitive to the nature of the dispersion.
In this appendix, we show that this sensitivity is absent when either
the sound or background waves are attenuating significantly. We will
also calculate the change in the wave speed that results from the non-
linear interactionms.

A sound wave that is attenuating has an inherent uncertainty in
frequency, which is called the decay bandwidth. If this uncertainty,
which is dissipative dispersion, is much larger than the reversible

dispersion then the net effect of dispersion on the attenuation is

negligible.

To calculate these nonlinear effects, we use alperturbacion method
developed by Bedeaux and Mazur.27 The method is to add to the fluid
equations an external driving force and a fluctuating force. As an
assumption, both forces drive the equations in an approximately linear
manner. The purpose of the external force is to identify a Green's
function, while the fluctuating force by design creates the background.
The presence of the background changes the Green's function through
nonlinear interactions. From this change, we directly calculate the
attenuation and speed of a sound wave.

The effect of the decay bandwidths will be simulated by adding ‘
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to the fluid equations a dissipative stress tensor of a Navier-Stokes
form. The attenuation of sound caused directly by this additionm will
be ignored but the resulting bandwidth which will appear in the non-
linear attenuation will be replaced by the true bandwidth.

Before applying the perturbation method, we make some simplifying
modifications and assumptions. First since the extermal and fluctu-
ating forces are weak, we expand the fluid equations in the small
deviations about the ragt fluid, and keep tetms which are at most
bilinear in the deviations. Second we neglect the nonlinear terms in
the fluid velocity. (In Chapter II, the velocity contributions were
calculated by a Qifferent method.) Third we assume that the wavenumber
of the sound wave is much less than the background wavenumbers.
Finally, we will assume that the dissipative and reversible dispersions
are small.

In Chapter I, we derived the dispersive fluid equations:

ds  » .

™y + v*Vs = 0 (conservation of entropy) , (B-1)
dp 2, =» .

3: + Ve(pv) = 0 (conservation of mass) , and (8-2)
¥, Gl $[- 3,3 (Newton's law) (B-3)
at ° 2s % ox,80p evton’s fawl o .. i

To expand these fluid equations in small deviations about the rest

fluid, we let
p=p, + 8p(x,t) , v = &5v(x,t) , and s = s, * Ss(x,t) ,

where oe and se are the density and specific entropy of the rest fluid

and the quantities with the prefix § are the deviations from rest. We
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then substitute these expressions into the fluid equatioms, Taylor
expand the internal emergy about the rest state, and keep only terms
at most bilinear in the deviations. We begin by considering the
entropv equation (B-1l):

Os

->
9 ,39s =0

ot
Substituting the deviation expressions, we find:

-
l-&s + 5veU8s = 0
at

This equation states that the deviation in entropy is proportiomal to a
small quantity times itself, which implies that the entropy deviation
is approximately zero and entropy per mass is constant. Since entropy
is constant, the expansion of the intermal energy to second order in

the density deviation is

+> 2
U(p,s,Vp) = U(p ,s ,0) + 14 bp + 131 502 + 3y (vp)? ,
e e dple 2 ap2le 3 (¥p)2

and the two remaining fluid equations (B~2,3) in terms of the devia-

tions are:

> >
:—‘:—E + T+ (8p6%) + p V6% = 0 and

> > 2 > >
v, (6veV)6v = - S 960 ~ == 7(8p)2 - a¥ Vzép
At P 20

where
a2 3
cz'pe-—u .s-pe-—-aue,and a=pll
2pile 2p3 ea(39)2 e

If we take the time derivative of the first equation, subtract the

gradient of the second equation, and neglect nonlinear terms in the
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velocity, we have one equation for mass density:
D8 = - 3¢ V2602 (B-4)

where

2
Q= %:b- c292 4+ oot

If we had included the Navier-Stokes dissipative tensor in the fluid
equation pertaining to Newton's law (B-3), we would have one altera-

tion:

32 _ 202 “ 2 8
2 o = c4VC + aVt + v V4
d dt2 b 3

where vb is four-thirds the shear viscosity plus the bulk viscosity,
which will be assumed to be a constant,
To apply the Green's function method, we add a driving force and

a fluctuating force to the one remaining fluid equation (B-4), which

1s our basic equation of interest:
Qe + % 72502 = T(X,t) + F(X,t) (B-5)

where T is the fluctuating force and F is the driving force. Next we

Fourier analyze this equation:
(- @ + W(k)2) 6p-§k2692-r+1-' ,

where 6p, 502, T, and F are now Fourier transforms and W(k)25c2k2+aka+

2
1vbwk .

When the forces are weak, we can initially neglect the nonlinear
term, and treat the dersity deviations created by each force as co-
existing independently. In this approximation, we let 60-60F+60T,

where GDT and GOF are created by the fluctuating and driving forces,
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respectively. The deviations, GoF and GQT, satisfy the equations:

Spp = Gy 0

F and GDT =G T s (B=6)
' -1 2 2
where Go is the linear Green's functiom: Go u(=u +W(k)T).
The nonlinear term in the fluid equation (B-5) is the source of

interaction between GQT and GOF. Including this term, we find a more

accurate equation for GDF:

(G'l

9 * L)épF = F ’

where L is the following operator:
L= - ekzépT ,
where it is implicit that L involves a convolution:
Lf = - €2k?[dq 8o, (k=q) - £(q)
We then formally invert the equation for 6oF and ensemble average over

the fluctuating quantity GOT:

S0, = GF , (3-7)

F

where G, which is identified as the Green's function in the presence

of the background, is

-1
G = <(1 + GOL) >G0

From the singularities of the Green's function, we will determine
both the attenuation and speed of a sound wave. To do this we let the

external driving force be

F(X,t) = explikeD)6(t)
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and then use the Green's function and Eq. (B~7) to find the response
GOF:

-»_,"‘ >
GpF = exp(ik'r)f dw G(w,k) exp(iwt)

Using contour integration, we identify the propagating modes for wave-

number, i, to be
b
GPF = exp(ik*r + iwjt) ,

where w1 are the simple poles of the Green's function for Imw>0. The

The imaginary part of wj 1s the attenuation coefficient and the real

part divided by the wavenumber is the wave speed.

For our fluid equation, the Green's function will be of the form:
>o1=1
6= [ w? - W2 +gluk) |7,

where the function g will be transcendental. To find the singularities
of the Green's function, we will presume that the presence of function
g does not significantly alter the positions of the poles so that the

dependence of g on w can be removed by setting w equal to its approxi-

mate value in the vicinity of the pole:

6= [ @ -w? s guny, 0 |7

The pole of the Green's function is at the location:

» L
a; = [ W) - gwx),x) )2

Expanding the square root in a Taylor series about W(k), we find:

Wy = W) = § gCW(R),K) /W(k)
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The imaginary part of wj is the attenuation coefficient, 8:

-
B = Im g(W(k),k)/2W(k) , (B-8)
and the real part divided by the wavenumber is the wave speed c(k):

¢l = Re 3 W) - 3 g0, /MG ] (3-9)

To find the Green's function in the presence of the background
(GQT), we must evaluate the ensemble average of the quantity: (1+G°L)-1.
We average this quantity by first expanding in powers of L, which is
presumed small, and then approximating by keeping the first three
terms. The terms are 1, GoL, and GOLGOL. The average of the first
term is itself. For the second, if we impose translational invariance,
then <60T>-0 and since -GOL-GoekzdoT, we deduce that <—G°L>-0. For the
third term, we write the term acting on the driving force with explicit

convolutions:

- > »>
GOLGOLF - g2p2 Go(w’k)IIII dw'd3k'dw"d3k"co (w",k")k"zF(w',k') x
-

> > > >

501'( k"-k' ’wll_ul ) 'épr(k' k" ’Wn)

The ensemble dependence in this expression is in the quantity:
> > > >

6°T(k"-k' ’wll-wl ) ,épr(k_ k" ,Mll)

whose ensemble average requires knowledge of the fluctuating force.

To proceed we must design the fluctuating force to create our
desired background which we assume is isotropic with spectral
intensity u(k). To meet this demand, we let the fluctuating force

satisfy the following correlation relation:
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PaV
Z"’ q?u(q) 8(x+x') 6(3+q")

<T(X,PT(X',T')> =

One can then verify that for this correlation of the fluctuating forces
the average energy density per unit wavenumber of the sound field is
given by -

-:- ”I dk'dw'dw <69T(w,'ﬁ)6pr(u' KD = u(k) ,

-l

where (B-6) 1is used for SQT. Using this correlation relation and the

equation relating GDT and T, we have the necessarY ensemble average:

PeVh
4

<Bp (1, PR (1!, ') = ?u(@) |6, (1, | *6xsx") 833"

The presence of the delta functions is a consequence of imposing trans-
lational invariance for space and time.
We have shown that the Green's function in the presence of a

background is

G = (1+6uewk) )5, ’
where

g(@,K) = <LGyL> .
Since the function g is small, we rewrite this equation in the approxi-
mate form:

6= (6!« gt
When we neglect the viscosity term in Go’ we have shown that the atten-

uation coefficient (8) and the wave speed are simply related to the

function g by Eqs. (B-8,9).
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What remains to be done is the evaluation of the function

gF = ngZIIf[ .dm'd3k'du"d3k"co (u",;")k"zF(w',;‘) x

> > > >
<69T(k"-k',m"~w’)'épr(k- k", W(k)=w")>

Substituting the expression for the ensemble average of squared density
deviation, making the change of variables K=k-X" and TaW(k)=-w", and
integrating the single primed integrations, we find:

> >
g . i} ezpe k2[d3x u(K)(x-k)szj'dr GO(P,;)GO(-I',-;)GO(W(k)-P.;-E)
4u?

Next we use contour integration to perform the integral over [, which
gives the result:

+ >
g= -~ e2p 2 [ d*Ru(R) (R-k)? Z[(W(k):W(x)+i—"b(x2+(i€-'i)2))z-w(‘t.g,z]‘l.
8xc? + 2

To integrate over [ space, we will use spherical coordinates whose
Z-axis 1s chosen along %. The integration over azimuthal angle is
trivial and has the valuye twice pi.

Before proceeding to perform the integration over the polar angle,
we will approximate the denominators of the integrand. Since the back-
ground wavenumbers are assumed to be much greater than the wavenumber
of the sound wave, we will keep only the leading order in the ratio
k/K. The dispersion is assumed small so that we keep only the leading

order in a and vb. With these approximations, the expression for g

becomes
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g = - 1l ;2pek21555£51J d(cosd)x

4c K -v

{ K2 + k2 - 2KRcos® }
* -aaxzkcoaze#(2c2k+4¢K2k+zivchk)coset(2c2k+axzk+21cvaz)

Integrating over the angle and keeping leading orders in a and vb, we

have the result:

g = - i e2p 12 [qriR) “‘K) Z { x+k)71n[cose t(l-‘l"- K2 lva ) - zxkco.e} '
8c*

-n

To find the attenuation coefficient and wave speed, we must
separate function g into its real and imaginary parts. This can be

accomplished with the following:
. 1 2 2 . .
In(x+iy) = E&n(x +y”) - i arctan(x/y) + i®/2 .

Using this relation and evaluating the function g at the limits of the

polar integration, we find:

g= - 1_“;29 k ]dxu(x){z + —ln[ 1+ [vaZ] ] _ —ln[ - [ ]2 ] -

2¢c vy c?

. 2w, 3aw,
1( arc:an(—-—2 + arctan[ ]]
VpK ZVbcz

where wg is the approximate frequency of the sound wave (i.e., ws-ck).
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Before finding the attenuation coefficient ama :ive speed, we make
three revisions. First we remove the dependence of g on viscosity by

replacing the quantity —3—5 , which 1s the lifetime of a wave of wave-
v K

number K in the viscous °fluid, by the true lifetime which we will
label T(K). Second, we include the effect of nonlinear terms in

velocity by redefining € as follows:

2
s 22,

Pe

o™
[[1]

where as before

A=l s+ £ de .

¢ dp

Finally we assume that the logarithm and arctangent in the expression
for g do not vary much over the range of wavenumbers for which the
background energy density (u(k)) is significant. This assumption
allows us to take the logarithm and arctangent outside the integral and
evaluate them at the wavenumber for which the background enery is
peaked. Incorporating these revisions, we find:

1 + (wet)?
g =2 a%% { 2+ -;-1::[ (4s7) -
e 1 + ((3ak2/4c?)ugt)?

i[ arctan(wgt) + arctan((3ai2/ac2)m,1) ] }

where K is the wavenumber for u(k) is maximum, E is the total energy
density (i.e., E=/dku(K)), and t=1(K).
The relationships between the function g and the attenuation coef=~

ficient and wave speed was shown to be Eq. (B-8,9). Using these rela-

28

tionships and the calculated g, we find to leading order in o and vb:
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2 -
g = BAEQ msE[ arctan{wgt) + arctan((SaK2/4c2)ust) ] and
e

4

where ¢, 1s the wave speed in the absence of nonlinearities or thermal

1 + (wgt)?
c(u’) =cy ¢+ E(1 ~
2P, 1 + ((3ak2/4¢?)uwgt)?

motion.

The assumptions and approximations that we have made in calculat-
ing the wave speed and attenuation are appropriate to describe sound
waves in liquid helium at low temperatures. The background is thermal
motion for which we know from statistical mechanics the total energy

density:
4w (I T)
E=

15h3¢3

where T is temperature, kB is Boltzmann's constant, and h is Planck's
constant.

The attenuation and wave speed depend on the product of the sound
frequency and the lifetime of the background waves. When this product

is much smaller than one, the attenuation coefficient becomes propor-

2
tional to the sound frequency squared: @= %—%2 tmi » and the change

in wave speed due to nonlinear effects is frequency independent:
2 2
2\ E + When the product (w_T) lies in the range 1l<<w T<< = .
Pt S s 3aK2
then the attenuation coefficient is the same as Westervelt's result for

Acs

a nondispersive fluid, and the change in wave speed is
2
A ¢ 2
Ac = EE:E E {4 + 1n(1+(wst) ))
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3ok2
3
c

coefficient is either zero or twice Westervelt's result depending on

When the product w7 is large so that wsr>>1, then the attenuation

whether the dispersive parameter g is negative or positive, respectively.

3ak?
The change in wave speed for w T

>>]1 becomes again frequency inde-

A2E c2 2 c
pendent:Ac -233-(4+1n[ -2} ]. For liquid helium at 0.0 bars and .3°

e 3aK 2
Kelvin, the value of the quantity c_z is predicted by experiments to
JoK

be roughly one hundred if the dispersion relation is assumed to be of
the form (1-34).

In liquid helium, neither the lifetime of the background waves nor
the fine details of the dispersion have been determined. For our re-
sults, it is clear that no value of the lifetime completely accounts
for the experimental results. The discrepancy may be due to our
implicit assumption that the sound wave lifetime was longer than that

of the background waves.
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APPENDIX C

WIEN'S DISPLACEMENT LAW FOR A PONDERABLE CONTINUUM

In the late nineteenth century, Wien29 derived the displacement
law which states that the electromagnetic radiation in equilibrium has

its energy distributed over wavelengths according to the form:
u(k) = &3 g(k/T) ,

where u is the energy per unit wavenumber, T 1s temperature, k is wave-
number, and g is an undetermined function. For a fluid, we will prove
that the thermal energy is distributed over wavelengths in the follow-

ing way:
u(k) = ckd £(ck/T) . (c-0)

where ¢ is the speed of sound and f is an undetermined function. The
appearance of the speed of sound is due to the fact that the sound
speed is not constant, unlike the speed of 1light.

Our derivation of the displacement law for a fluid is outlined as

follows. First we show following the method of Whitham30

that for a
sound wave the wave energy divided by the frequency is an adiabatic
invariant. Next we consider a quasistatic change in volume and use the
fact that the ratio of wave energy to frequency is comstant for each
thermal component to calculate the change in thermal distribution.

From this change, we will show that the thermal distribution as a

function of the volume and wavenumber has the form:

u(k) = ckd n(k3V) |,
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where V is the volume and h is an undetermined function. We then use
thermodynamics and hydrodynamics to show that the quantity X%i remains
constant for a quasistatic change in volume. Using this fazt and the
functional dependence of the thermal distribution on volume, we deduce
dependence of the thermal distribution on temperature is of the form
(c=0).

That the ratio of the wave energy to frequency is an adiabatic
invariant will be shown using the principle of least action. Action is
defined as the integral of the Lagrangian density which is the dif-
ference between the kinetic and potential energy densities. To de-
scribe a sound wave, we will show that the Lagrangian can be approxi-
mated and written in terms of the independent variables relating to
the amplitude and pbhase of the wave. Demanding that action be a
minimum, we will show that resulting dymamical equations imply that the
ratio of energy to frequency is an adiabatic inmvariant.

The Lagrangian density that is appropriate for a sound wave in a

fluid is of the form:
L"]2-'932‘U(9) »

where p is mass density, V 1s the fluid velocity, and U is the intermal
energy. Since the sound wave is presumed to be of low amplitude, we
expand the Lagrangian density in terms of the deviations and keep only

leading order terms:

1 > 2
L=3p6v2 = u(p) -2 5582 552
2 e e bpep Sp

Zpe
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where 0, is the rest density, 8V and 8p are the deviations, and

2
c

oegégle . The leading term in the expansion of the internal energy
is neglected because it is constant and will have no effect when de-
manding that action be minimum. The second term is also neglected be-
cause its countribution to the sound wave energy is zero. The effective
Lagrangian density is therefore:

L-%peézz--:%épz

e
Next we rewrite the Lagrangian in terms of the Lagrange coordinates

using the relations:

$adl b0 = o V+h

ot e s
where n is the displacement of the fluld particle from equilibrium.
For a sound wave, the displacement can be writtea in terms of the

amplitude and phase:

> >
N = A exp(i@) + c.c. ,

where A is the amplitude and 8 is the phase to which frequency and

wavenumber are related as follows:

> >
w--:.—; and k= 79 .

When the density of the fluid is changing slowly, then the quantities
K, w, and k are also slowly varying. Substituting the form of the
displacement into the Lagrangian density and neglecting the slow vari-

ations, we find
Pe (> s 2f (302 >..2
L= - N Re[Aexp(i8) - Aexp(-i0)] {[a_] + c2(v0) }
t

Since we are interested in global properties of the sound wave, we

average the Lagrangian over a wavelength:
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2
<t> = p_|4|? [(%%J . c2(3é)2]

Performing the variations of the independent variables % and 8, and

demanding that action be a minimum, we find the equations:

B w 2o ma L (o [22) + F[s, 3|25 o] - 0

Using vector analysis and algebra, we can use the two equations above
to derive the following equation:

.0 o > 2

\r{ >

Lo [ ca)eo unere =AY 2F02) 4 (2
3¢ 1% 3t ac)k
This equation is in the form of a comservation equation for which the
invariant quantity is Q. The excess energy density for the fluid is

approximately:

2
Es= l-p 592 + S5 502
Z'e 20,

which 1f put in terms of % and 8, and averaged gives the energy of the

sound wave:

E w
ot Q

Since the quantity %% is the frequency and the quantity Q is invariant,
we deduce that the energy divided by frequency is an adiabatic invari-
ant. For the particular case of the quasistatic change in volume we

have

d
™ (E/w) = 0 . (c-1)

We now consider a small quasistatic change in volume of a fluid

at some initial temperature. The energy of thermal motion can be
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viewed as being distributed in an unique way over the wavenumbers of
the thermal waves. The quasistatic change in volume alters the distri-
bution. If nonlinear interaction between waves is neglectable, then
the change in the distribution can be determined by applying (C-1) to
each of the waves that compose the thermal distribution. From the
change in distribution we will derive information about the form of the
distribution.

The proof that nonlinearities are neglectable is as follows. We
imagine that the fluid i1s compressed with nonlinearities turned off
gso that the distribution changes according to (C-1). Now we turm on
the nonlinearities. If we started from an equilibrium state and if the
compression is reversible then there can be no entropy change due to
nonlinearities and the new distribution generated from (C~1) must be an
equilibrium distribution for which nonlinearities have no effect.

To find the change in distribution due to the quasistatic volume
change, we let h be the mechanical function (h=h(k,7)] such that the

energr density in the wavenumber interval dk at k is hck3

dk (i.e. we
start with a certain distribution h over k for the given volume and
now change volume and therefore take h=h(k,V)). Then the fact that the

energy in dk divided by its frequency (ck) is invariant implies the
relation:

Vhk? dk = V'h'k'? dk’ , (c-2)

where V 1s the volume and the primes denote the changed quantities.
This relation can be simplified by expressing the primed wavenumber in
terms of the change in volume. Boundary conditions at the walls com-

taining the fluid demand that the wavenumber be inversely proportional
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to the linear dimension of the system and since volume is proportional to
the third power of the linear dimemsion, we can use simple calculus to
derive the following relation which is valid to first order in the

change in volume:

Ay
k'-[ —._.]k . -
1 3V (¢c-3)

where AV is the change in volume. Substituting the k' from (C-3) into
(C-2) and keeping terms to order &, we find h=h', (C-4)
Using Eq. (C~4), we will show that the thermal distribution is of

the form:

ulk) = ckdn(k3dv) (c-5)

First we expand the primed h in a Taylor series about the initial
wavenumber and volume, and keep only terms first order in AV:

") = 3h ah
h' = h(k',V') = h(k,V) + 2ok + 2V | (C-6)

Using the Eqgs. (C?3), (C-4), and (C-6), we can relate the partial

derivatives of h: %-%% =V %% . The solution to this partial differ-

ential equation is h-h(k3V), which proves the thermal distribution is
of the form (C~5).

Our ultimate goal is to derive the displacement law, which will
follow from (C-5) and the fact that the quantity VT3/<:3 is a ttermwo-
dynamic adiabatic invariant. The proof that VT3/c3 is invariant will
proceed as follows, Tirst we separate both the pressure and energy of
the fluid into two pieces: one pilece due to thermal motion and the
other being that which exists in the absence of thermal motion (at
zero degrees). Then we use (C-1) to derive the relationship between

the pressure and energy of the excitations. With this relationship

74




and a form of the second law of thermodynamics we will show that the

total energy of thermal motion has the following dependence on T and c:
™
Ux - constan:':a . (c=7)

Using this last relation and the first law of thermodynamics, we will
find that v‘l'3/c3 is constant for a quasistatic change in volume.
For the fluid we write the pressure and total energy density in

the sums: P-PO+Px and U-U°+Ux, where the subscript "zero'" refers to the

" n

values of the quantities at zero temperature and the subscript 'x
refers to contribution from thermal motion. The energy density and

pressure are related by the first law of thermodynamics:

duv

- P (c-8)

At zero degrees, this equation reads as

gy

Using (C-8) and (C-9), we can derive the equation that relates Px and

Ux:
P = - ULV

X v Is (€-10)

A simple relationship between Px and Ux can be derived from (C-1),
(C-10), and the assumption that the speed of sound depends only on
density. For a single wave, (C~1) impiies that in a quasistatic change
in volume the change in wave energy in terms of the change in frequency

is given by the equation:

8E . Mw
E w

Since w=ck, the change in energy can be expressed in terms of Ak and

dc:
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= 8¢C

AL
E

°|

Ak
*

If ¢ is only a function of density, then the change in ¢ in terms of
AV is:

Ac = - p—

dc AV
% V (Cc-12)

Using (C-3), (C-1l) and (C-12) we can express AE in terms of AV:

Az--[l+-"-.d-°-]5Av
3 caplv

Since this equation is true for each wave that composes the thermal

distribution, 1t is also true for the whole distribution so that
1 p dec
AUY) = - (3+333 )uxAv .

Comparing this equation to (C-10), we deduce that Px is

a|l,Pdc
Px [3+cdplux . (Cc~13)

As the relation for AE also applied only to adiabatic transforma-
tions, the dependence of U‘ on T can be found using (C~13) and the
second law of thermodynamics. A consequence of the second law, which

arises from equating mixed partial derivatives of entropy, is the

equation:31
auv| - 0P ?
av It darly ) (c-14)
3U°V
Since N P° , we can write (C-14) for just Px and Ux:

-p .

du
xv, .-r ng
T oT x

v

Substituting the Px from (C~13), we have:
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%
Ule . [.l . P de ].[ T EH; g ]
v It 3 cadp dr lv  x

If we let Z-V/c3, we can transform the last equation:

8 Y e YU
%lnz T 3tnTd T

The general solution to this equation is

U -IF(ln(z‘la) s

x v
where F is as yet undetermined. Since Ux is intensive, the function F
must be exponential and therefore the total energy demsity 1is given by

Ux = constant T4/c3 . (C-15)

Using (C-10) and (C~15), we can prove that the quantity V'I'3/c3 is
invariant for a quasistatic change in volume. Substituting the Px from

(C-13) and the Ux from (C-15) iato (C-10), we find with some algebra:

oty . . [ P dc } T _
dvis < dD (c-16)

The identity

1+E-d—c-.c-32_1
37w 3wl

is useful for the derivation. Using equation (C-16), we can show

directly that

ZVHE} =0 . (c-17)

An implication that can be made from (C-17) is that during any
quasistatic change in volume, the volume is proportional to a constant

times T3/c3. Substituting this form of V ianto (C~5), we have the
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displacement law for a fluid:

u(k) = ck® £(ck/T) .

oo

RN R DI A O

et Y AR AL MR ES05d

e




10.

11.

12.

13.

BIBLIOGRAPHY

L.D. Landau and E.M. Lifshitz, Fluid Mechanics, Pergamon Press,

London, 1959, p. 1.

L.D. Landau and E.M. Lifshitz, Theory of Elasticity, Pergamon
Press, London, 1959, p. 116.

I1.M. Bassett and M.H.L. Pryce, Phys. Rev. 150, 640 (1966).

P.J. Westervelt, J. Acoust. Soc. Am. 29, 199 (1957).

D.S. Greywall, Phys. Rev. B 18, 2127 (1978).

P.R. Roach, J.B. Ketterson, and M. Kuchnir, Phys. Rev. A 5, 2205
(1972); B.M. Abraham, Y. Eckstein, J.B. Ketterson, M. Kuchnir, and
J. Vignos, Phys. Rev. 181, 347 (1969).

D.J. Benny and P.G. Saffman, Proc. Roy. Soc. Lomd. A 289, 301
(1966); A.C. Newell and P.J. Aveoin, J. Fluid Mech. 49, 593 (1971).
G.L. Slonimski, Zh. Eksp. Theor. Fiz. 7, 1457 (1937); J. Jackle
and K.W. Kerr, Phys. Rev. Lett. 24, 1101 (1970).

S. Putterman and M. Cabot, McGraw-Hill Encyclopedia, 145 (1984).
D.J. Van Harlingren, R.M. Koch, and J. Clarke, Physica B+C 108,
1083 (1981).

L.D. Landau and E.M. Lifshitz, Statistical Physics, Pergamon Press,

London, 1959, p. 400.
S.J. Putterman and P.H. Roberts, Phys. Lett. 89A, 444 (1982).
S..J. Putterman and P.H. Roberts, Physica, to be published.

C.C. Lin, in Liquid Helium, ed. G. Careri, Academic Press, New

York, 1963; R. Seliger and G. Yhitham, Proc. Roy Soc. A 305, 1

(1968); S. Putterman, Phys. Lett. 894, 146 71982).

79




14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.
28.

29.

H.J. Maris and W.E., Massey, Phys. Rev. Lett. 25, 220 (1970).
B.M. Abraham, Y. Eckstein, J.B. Ketterson, M. Kuchnir, and P.R.
Roach, Phys. Rev. A 1, 250 (1970).

B.J. Maris, Phys. Rev. A 8, 2629 (1973).

M. Cabot and S. Putterman, Phys. Lett. 83A, 91 (1981). Compare
with Reference 7.

A. Einstein and O. Stern, Ann. d. Phys. 40, 551 (1913).

P. Roberts, Physica, to be published.

R. Baumgartner, M. Engelhadht, and K. Renk , Physica 1078, 109
(1981).

Lord Rayleigh, Phil. Mag. 10, 364 (1905).

F. London, Superfluids Vcl. 1I, NDover Publ., New York, 1964.

C. Kittel, Introduction to Solid State Physics, John Wiley and

Sons, New York, 1968, p. 134.
A.C. Scott, F.Y.F, Chu, D. Mclaughlin, Proc. IEEE 61, 1443 (1973).

V.1. Karpman, Nonlinear Waves in Dispersive Media, Pergamon Press,

New York, 1975, p. 76.

R. Beyers, Nonlinear Acoustics, U.S. Government Printing Office,

1975, 0-596-215, p. 226.

D. Bedeaux and P. Mazur, Physica 73, 431 (1974).

This result has been derived using quantum theory by C.J. Pethick
and D. ter Haar, Physica 32, 1905 (1966).

W. Wien, Ann. Phys. 52, 132 (1894); J. Roberts and A. Miller,

Heat and Thermodynamics, Interscience Publ., New York, 1928,

p. 105.

80




30. G.B. Whitham, Linear and Nonlinear Waves, John Wiley and Sons,

New York, 1974, p. 395.

31. F. Reif, Fundamentals of Statistical and Thermal Physics, McGraw-
Hill, New York, 1965, p. 173.

81




REPORTS DISTRIBUTION ((ST FOR ONR PHYSICS PROGRAM NFFICE

UMCLASSIFIED CONTRACTS

Director

Defense Advanced Research Projects Agency
Attn: Technical Library

1400 Wilson Blvd.

Arlington, Virginia 222n%

nffice of Naval Research

Physics Program Office (Code 412)
R00 North Quincy Street
Arlington, Virginia 22217

office of Naval Research
director, Technology (Code 200)
80N North Quincy Street
Arlington, Virginia 22217

Naval Research Laboratory
Department of the Navy
Attn: Technical Library
Washington, DC 20375

0ffice of the Director of Defense
Research and Engineering

Information 0ffice Library Branch

The Pentagon

Washington, DC 20301

U. S. Army Research Nffice
Box 12211

Research Triangle Park
torth Carolina 2770%

Defense Technical Information Center
Cameron Station
Alexandria, Yirginia 22314

Director, Hational Bureau of Standards
Attn: Technical Library
vashington, DC 2023k

Commanding 0Officer

0ffice of Naval Research Western Pegional Office
1030 East Green Street

Pasadena, California 9710}

Commanding Officer

Dffice of Haval Research Eastern/Central Regional (ffice

666 Summer Street
Boston, Massachusetts 02210°

3 copies

3 copies

1 copy

3 copies

9 copies

2 copies .

12 copies

1 copy

3 copies

3 copies



Director

U. S. Army Engineering Research
and Development Laboratories

Attn: Technica) Documents Center

Fort Belvoir, Virginia 22060

ODDORELE Advisory Group on Electron Devices

20) Varick Street
New York, New York 1001k

Air Force Office of Scientific Research
Department of the Air Force
Bolling AFB, D. €. 22209

Air Force Weapons Laboratory
Technical Library

Kirtland Air Force Base
Albuquerque, New Mexico 87117

Air Force Avionics Laboratory
Air Force Systems Command
Technical Library
Wright-Patterson Air Force Base
Dayton, Ohic L5433

Lawrence Livermore Laboratory
Attn: Dr. W. F. Krupke
University of California

P.0. Box 808 -

Livermore, CAlifornia 94520

Harry Diamond Laboratories
Technical Library

2800 Powder Mill Road
Adelphi, Maryland 20783

Naval Air Development Center
Attn: Technical Library
Johnsville

Warminster, Pennsylvania 18474

Naval Weapons Center
Technical Library (Code 753)
China Lake, California @36565

Naval Traihing Equipment Center
Techntcal Library ‘
Orlando, Florida 32813

Maval Underwater Systems (Center
Technical Center
New London, Connecticut 06320

copy

copies

copy

copy

copy

copy

copy

copy

copy

copy

copy



A

Commandant of the Marine Corps
Scientific Advisor {Code RD-1)
Washington, DC 20380

Maval Crdnance Station
Technical Library
Indian Head, Maryland 20640

Maval Postgraduate School
Technical Library (Code 0212)
Monterey, California 93940

Naval Missile Center
Technical Library (Code 5632.2)
Point Mugu, California 93010

Naval Ordnance Station
Technical Library
Louisville, Kentucky &n214

Commanding Officer .
Naval Ocean Research & Development Activity
Technical Library

NSTL Station, Mississippi 30529

Maval Explosive Ordnance Dispose. Facility
Technical Library
indian Head, Maryland 20640

Naval Ocean Systems Center
Technical Library
San Diego, California 92152

Nava!l Surface Weapons Center
Technical Library
Silver Spring, Maryland 20810

Naval Ship Research and Development Center
Central Library (Code L42 and L43)
Bethesda, Maryland 20084

Maval Avionics Facility
Technical Library ~
Indianapolis, Indiana 46218

-

copy

copy

COpY

copy

copy

copy

copy

copy

copy

copy

copy






